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Introduction - (generalized) iterated function systems

Hutchinson-Barnsley theorem

Theorem (Hutchinson, Barnsley, 1980's)

If X is a complete metric space and F is a finite family of Banach
contractions of X (Lip(f) < 1 for f € F), then there exists a unique
nonempty and compact set Ax C X such that

Ar = f(Ar).
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feFr

Remark
It is enough to assume that each f € F is weak contraction (in the sense
of Rakotch, Browder, Matkowski). If X is compact, then it means

d(f(x), f(y)) <d(x,y), x,y € X, x#y.

Filip Strobin .



Introduction - (generalized) iterated function systems

IFS fractals

Definition
(*) A finite family F of weak [Banach] contractions will be called a
weak [Banach] iterated function system (IFS).

Filip Strobin .



Introduction - (generalized) iterated function systems

IFS fractals

Definition
(*) A finite family F of weak [Banach] contractions will be called a
weak [Banach] iterated function system (IFS).

(*) A set Ax which satisfy the thesis of the H-B theorem will be called
an attractor or fractal generated by F.

Filip Strobin .



Introduction - (generalized) iterated function systems

IFS fractals

Definition
(*) A finite family F of weak [Banach] contractions will be called a
weak [Banach] iterated function system (IFS).

(*) A set Ax which satisfy the thesis of the H-B theorem will be called
an attractor or fractal generated by F.

(*) A compact metric space X is called weak [Banach] IFS fractal, if it
is an attractor of some weak [Banach] IFS.

Filip Strobin .



Introduction - (generalized) iterated function systems

generalized IFS

If X is a metric space and m € N, then we endow the Cartesian product
X™ with the maximum metric d,.

Filip Strobin .



Introduction - (generalized) iterated function systems

generalized IFS

If X is a metric space and m € N, then we endow the Cartesian product
X™ with the maximum metric d,.
Definiton

(*) Amap f: X™ — X is called a generalized Banach contraction of
order m, if Lip(f) < 1.

Filip Strobin .



Introduction - (generalized) iterated function systems

generalized IFS

If X is a metric space and m € N, then we endow the Cartesian product
X™ with the maximum metric d,.
Definiton

(*) Amap f: X™ — X is called a generalized Banach contraction of
order m, if Lip(f) < 1.

(*) Amap f: X™ — X is called a generalized weak contraction of order
m, if ... it satisfies weaker contractive condition, which in the case
when X is compact reduces to

d(f(x), f(y)) < dm(x,y).

Filip Strobin .



Introduction - (generalized) iterated function systems

generalized IFS

If X is a metric space and m € N, then we endow the Cartesian product
X™ with the maximum metric d,.
Definiton

(*) Amap f: X™ — X is called a generalized Banach contraction of
order m, if Lip(f) < 1.

(*) Amap f: X™ — X is called a generalized weak contraction of order
m, if ... it satisfies weaker contractive condition, which in the case
when X is compact reduces to

d(f(x), f(y)) < dm(x,y).

(*) A finite family G of generalized weak [Banach] contractions of order

m is called a weak [Banach] generalized iterated function system of
order m (GIFS).
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GIFS fractals

Theorem (Mihail, Miculescu 2008, S., Swaczyna 2013)
If X is a complete metric space and G is a weak GIFS on X of order m,
then there exsts a unique nonempty and compact set Ag C X such that

Ag = f(Ag x ... x Ag)
feg
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Theorem (Mihail, Miculescu 2008, S., Swaczyna 2013)
If X is a complete metric space and G is a weak GIFS on X of order m,
then there exsts a unique nonempty and compact set Ag C X such that

Ag = f(Ag x ... x Ag)
feg
Definition
(*) A set Ag is called a attractor or fractal generated by G.

(*) A compact metric space X is called weak [Banach] GIFS fractal of

order m, if X is the attractor of some weak [Banach] GIFS of order
m.
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problem - the class of GIFSs’ fractals

Problem

Is the class of GIFSs' fractals essentially wider than the class of IFSs’
fractals?

Which sets/spaces are GIFSs' fractals?
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examples

Example (Mihail, Miculescu 2010)

The Hilbert cube X = [0,1] x [0, 1] x [0, 3] x ...

(x) is a Banach GIFS fractal of order 2, for a GIFS G = {f, g}, where

[ay

0o ) = 3 Gy ) 80, 00) = 3 (1 31,7 720)

(*) is not a Banach IFS fractal (as it has infinite dimension);
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examples

Example (Mihail, Miculescu 2010)

The Hilbert cube X = [0,1] x [0, 1] x [0, 3] x ...

(x) is a Banach GIFS fractal of order 2, for a GIFS G = {f, g}, where

[ay

0o ) = 3 Gy ) 80, 00) = 3 (1 31,7 720)

(*) is not a Banach IFS fractal (as it has infinite dimension);
However, it is not known whether it a weak IFS fractal.
Example (S. 2013)
(1) For each m > 2, there exists a Cantor set C(m) C R? such that:

(x) C(m) is a Banach GIFS fractal of order m;

(*) C(m) is not a weak GIFS fractal of order m — 1;
(2) There exists a Cantor set C C R? which is not a weak GIFS fractal.
However, C(m) is homeomorphic to the Cantor ternary set, the attractor
of a Banach IFS on R.
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has an isolated point.

Fact Compact metrizable topological space is scattered iff it is countable.
For a scattered space X, define the Cantor-Bendixon derivative by

X' :={x € X : xis an accumulation point of X}

For each ordinal «, define the Cantor-Bendixon a-th derivative X (<) by
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(%) X(@) .= ﬂﬁ<a X ) for a limit ordinal a.
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scattered spaces

A topological space X is called scattered, if every its nonempty subspace
has an isolated point.
Fact Compact metrizable topological space is scattered iff it is countable.

For a scattered space X, define the Cantor-Bendixon derivative by
X' :={x € X : xis an accumulation point of X}

For each ordinal «, define the Cantor-Bendixon a-th derivative X (<) by
(%) X(a+1) (X(a))
(%) X ﬂﬁ ) for a limit ordinal a.

The scattered height of X is defined by ht(X) := min{a : X(®) is finite}.

Theorem (Mazurkiewicz-Sierpinski)

Each metrizable compact scattered space X is homeomorphic to the
space w” - n+ 1 for some 8 < wy, and in this case ht(X) = 3 and
card( XMy = p.
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proof - certain scattered subsets of real line

Construction of sets L, (Nowak, 2013)
Fix a limit ordinal §p < wq. For every a < dg, there exists a sequence
() such that

(a) for every a < o, the sequence (a, +1) /" «;
<

(b) for every a < 8 < dp, we have a, < 3, for every n € N.
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Fix a limit ordinal §p < wq. For every a < dg, there exists a sequence
() such that
(a) for every a < o, the sequence (a, +1) /" «;

(b) for every a < 8 < dp, we have a, < 3, for every n € N.

For n € N, let s,(x) := r"x+ r", where r < 1. Then define the family L,,
a < dp in the following inductive way:

(1) Lo:={0}
(2) Lo = Lo U U:il sn(La,)-

Filip Strobin



Main results

proof - certain scattered subsets of real line

Construction of sets L, (Nowak, 2013)
Fix a limit ordinal §p < wq. For every a < dg, there exists a sequence
() such that

(a) for every a < o, the sequence (a, +1) /" «;

<
(b) for every a < 8 < dp, we have a, < 3, for every n € N.

For n € N, let s,(x) := r"x+ r", where r < 1. Then define the family L,,
a < dp in the following inductive way:

(1) Lo:={0};

(2) La = LoUU,Z; sn(Lay)-

Fact

L, is scattered space with ht(L,) = a and (L,)(®) = {0}. In particular,
L, is homeomorphic to w® + 1.
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Main results

proof of (1) - unital case

Lemma (Nowak, 2013)

For every a < 60, there exists a map g, : [0,1] — [0, 1] such that
(i) Lip(ga) <
(i) ifa< <

172r'
0o, then go(Lg) = L.
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Lemma (Nowak, 2013)

For every a < 60, there exists a map g, : [0,1] — [0, 1] such that
(i) Lip(ga) < 25

(i) if o < B < o, then go(Lg) = Lo-

Given o < wy define the map F, G : L, X L, — L, by

G(x,y) = s1(ga;(x)) and F(x,y) = { s"+1(g3"+l(X)) :: g Eysl(éan)
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Lemma (Nowak, 2013)

For every a < 60, there exists a map g, : [0,1] — [0, 1] such that
(i) Lip(ga) < 25

(i) if o < B < o, then go(Lg) = Lo-

Given o < wy define the map F, G : L, X L, — L, by

G(x,y) = s1(ga;(x)) and F(x,y) = { s"+1(g3"+l(X)) :: g Eysl(éan)

Then:
2r r

Lip(G) <
12 UPE) <75,

Lip(F) <

F(Lo X Lo) U G(Ly % Ly) = (Lo u D sn+1(LaM)> U(s1(La)) = La

n=1
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proof of (1) - the general case

Theorem (Maslanka, S. 2017)
Let X be a metrizable compact scattered space.

(1) X is homeomorphic to a set A C R which is a Banach
GIFS-fractal of order 2.
(2) For every m € N, X is homeomorphic to the set A C R such that:

(*) Ais a Banach GIFS fractal of order m;
(*) Ais not a weak GIFS fractal of order m — 1;

(3) X is homeomorphic to a set A C R which is not a weak GIFS-fractal.

Fact
If X is a metric space of the form X = X; U ... U X,,, where

(i) each X; is a Banach GIFS fractal of order 2;
(II) min,-;éj diSt(X,',)g') > max,-diam(X,-),
then X is a Banach GIFS fractal of order 2.
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proofs of (2) and (3)

Theorem (Maslanka, S. 2017)
Let X be a metrizable compact scattered space.
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of order 2.

(2) For every m € N, X is homeomorphic to the set A C R such
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(3) X is homeomorphic to a set A C R which is not a weak GIFS
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Main results

proofs of (2) and (3)

Theorem (Maslanka, S. 2017)
Let X be a metrizable compact scattered space.

(1) X is homeomorphic to a set A C R which is a Banach GIFS fractal
of order 2.

(2) For every m € N, X is homeomorphic to the set A C R such
that:

(*) A'is a Banach GIFS fractal of order m;
(*) Ais not a weak GIFS fractal of order m — 1;

(3) X is homeomorphic to a set A C R which is not a weak GIFS
fractal.

Modify sets L, in the following way:
(*) replace s, by another transformation s& (different at each level «);

(*) to each segment s¥(L,,) add appropriate finite set.
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Main results

next results - further modifications

Theorem(Maslanka, S., 2017)
Let Z be a connected Banach GIFS fractal of order m. There exists a
compact metric space X such that:

(1) each connected component of X is a homothetic copy of Z;
(2) X is not homeomorphic to a weak IFS fractal;
(3) X is a Banach GIFS fractal of order max{2, m}.
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next results - further modifications

Theorem(Maslanka, S., 2017)
Let Z be a connected Banach GIFS fractal of order m. There exists a

compact metric space X such that:

(1) each connected component of X is a homothetic copy of Z;
(2) X is not homeomorphic to a weak IFS fractal;

(3) X is a Banach GIFS fractal of order max{2, m}.

Proof (sketch)
Replace each point in L, by appropriately small copy of Z.

Corollary
For every n € N and real 1 < s < n, there exists a set A C R” such that:

(i) dimy(A) =s;
(i) A is not homeomorphic to a weak IFS fractal;

(iii) Ais a Banach GIFS fractal of order 2.
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Main results

open problems

Problems

(1) Let m > 2. Is there a compact metric space X which is a Banach
GIFS fractal of order m, but which is not homeomorphic to a weak GIFS
fractal of order m — 17

(2) Does there exists a Peano continuum X which is a Banach GIFS
fractal, but which is not (homeomorphic to) weak IFS fractal?
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