compact scattered spaces as attractors of generalized iterated function systems

Filip Strobin

(with Łukasz Maślanka)

Institute of Mathematics, Łódź z University of Technology, Łódź, Poland

A B M A B M

Hutchinson-Barnsley theorem

Theorem (Hutchinson, Barnsley, 1980's)

If X is a complete metric space and \mathcal{F} is a finite family of Banach contractions of X (Lip(f) < 1 for $f \in \mathcal{F}$), then there exists a unique nonempty and compact set $A_{\mathcal{F}} \subset X$ such that

$$A_{\mathcal{F}} = \bigcup_{f \in \mathcal{F}} f(A_{\mathcal{F}}).$$

Remark

It is enough to assume that each $f \in \mathcal{F}$ is *weak* contraction (in the sense of Rakotch, Browder, Matkowski). If X is compact, then it means

$$d(f(x), f(y)) < d(x, y), \ x, y \in X, \ x \neq y.$$

イロト イポト イヨト イヨト

э

Hutchinson-Barnsley theorem

Theorem (Hutchinson, Barnsley, 1980's)

If X is a complete metric space and \mathcal{F} is a finite family of Banach contractions of X (Lip(f) < 1 for $f \in \mathcal{F}$), then there exists a unique nonempty and compact set $A_{\mathcal{F}} \subset X$ such that

$$A_{\mathcal{F}} = \bigcup_{f \in \mathcal{F}} f(A_{\mathcal{F}}).$$

Remark

It is enough to assume that each $f \in \mathcal{F}$ is *weak* contraction (in the sense of Rakotch, Browder, Matkowski). If X is compact, then it means

$$d(f(x),f(y)) < d(x,y), \ x,y \in X, \ x \neq y.$$

< ロ > < 同 > < 回 > < 回 > .

IFS fractals

Definition

- (*) A finite family \mathcal{F} of weak [Banach] contractions will be called a weak [Banach] iterated function system (IFS).
- (*) A set $A_{\mathcal{F}}$ which satisfy the thesis of the H-B theorem will be called *an attractor* or *fractal generated by* \mathcal{F} .
- (*) A compact metric space X is called *weak* [Banach] IFS fractal, if it is an attractor of some weak [Banach] IFS.

イロト 不得 トイヨト イヨト

3

IFS fractals

Definition

- (*) A finite family \mathcal{F} of weak [Banach] contractions will be called a weak [Banach] iterated function system (IFS).
- (*) A set $A_{\mathcal{F}}$ which satisfy the thesis of the H-B theorem will be called *an attractor* or *fractal generated by* \mathcal{F} .
- (*) A compact metric space X is called *weak* [Banach] IFS fractal, if it is an attractor of some weak [Banach] IFS.

イロト 不得 トイヨト イヨト

э.

IFS fractals

Definition

- (*) A finite family \mathcal{F} of weak [Banach] contractions will be called a weak [Banach] iterated function system (IFS).
- (*) A set $A_{\mathcal{F}}$ which satisfy the thesis of the H-B theorem will be called *an attractor* or *fractal generated by* \mathcal{F} .
- (*) A compact metric space X is called *weak* [Banach] IFS fractal, if it is an attractor of some weak [Banach] IFS.

イロト イポト イヨト イヨト

э.

If X is a metric space and $m \in \mathbb{N}$, then we endow the Cartesian product X^m with the maximum metric d_m .

Definiton

- (*) A map $f : X^m \to X$ is called a generalized Banach contraction of order m, if Lip(f) < 1.
- (*) A map $f: X^m \to X$ is called a generalized weak contraction of order m, if ... it satisfies weaker contractive condition, which in the case when X is compact reduces to

$$d(f(x), f(y)) < d_m(x, y).$$

(*) A finite family G of generalized weak [Banach] contractions of order m is called a *weak* [Banach] generalized iterated function system of order m (GIFS).

イロン 不同 とくほう イヨン しほう

If X is a metric space and $m \in \mathbb{N}$, then we endow the Cartesian product X^m with the maximum metric d_m .

Definiton

- (*) A map $f : X^m \to X$ is called a generalized Banach contraction of order m, if Lip(f) < 1.
- (*) A map $f : X^m \to X$ is called a generalized weak contraction of order m, if ... it satisfies weaker contractive condition, which in the case when X is compact reduces to

$$d(f(x), f(y)) < d_m(x, y).$$

(*) A finite family G of generalized weak [Banach] contractions of order m is called a *weak* [Banach] generalized iterated function system of order m (GIFS).

If X is a metric space and $m \in \mathbb{N}$, then we endow the Cartesian product X^m with the maximum metric d_m .

Definiton

- (*) A map $f : X^m \to X$ is called a generalized Banach contraction of order m, if Lip(f) < 1.
- (*) A map $f : X^m \to X$ is called a generalized weak contraction of order m, if ... it satisfies weaker contractive condition, which in the case when X is compact reduces to

$$d(f(x), f(y)) < d_m(x, y).$$

(*) A finite family G of generalized weak [Banach] contractions of order m is called a weak [Banach] generalized iterated function system of order m (GIFS).

If X is a metric space and $m \in \mathbb{N}$, then we endow the Cartesian product X^m with the maximum metric d_m .

Definiton

- (*) A map $f : X^m \to X$ is called a generalized Banach contraction of order m, if Lip(f) < 1.
- (*) A map $f : X^m \to X$ is called a generalized weak contraction of order m, if ... it satisfies weaker contractive condition, which in the case when X is compact reduces to

$$d(f(x), f(y)) < d_m(x, y).$$

(*) A finite family G of generalized weak [Banach] contractions of order m is called a weak [Banach] generalized iterated function system of order m (GIFS).

GIFS fractals

Theorem (Mihail, Miculescu 2008, S., Swaczyna 2013) If X is a complete metric space and G is a weak GIFS on X of order m, then there exsts a unique nonempty and compact set $A_G \subset X$ such that

$$A_{\mathcal{G}} = \bigcup_{f \in \mathcal{G}} f(A_G \times ... \times A_G)$$

Definition

- (*) A set $A_{\mathcal{G}}$ is called a *attractor* or *fractal generated by* \mathcal{G} .
- (*) A compact metric space X is called *weak* [Banach] GIFS fractal of order m, if X is the attractor of some weak [Banach] GIFS of order m.

< ロ > < 同 > < 三 > < 三 >

GIFS fractals

Theorem (Mihail, Miculescu 2008, S., Swaczyna 2013) If X is a complete metric space and G is a weak GIFS on X of order m, then there exsts a unique nonempty and compact set $A_G \subset X$ such that

$$A_{\mathcal{G}} = \bigcup_{f \in \mathcal{G}} f(A_{\mathcal{G}} \times ... \times A_{\mathcal{G}})$$

Definition

- (*) A set $A_{\mathcal{G}}$ is called a *attractor* or *fractal generated by* \mathcal{G} .
- (*) A compact metric space X is called *weak* [Banach] GIFS fractal of order m, if X is the attractor of some weak [Banach] GIFS of order m.

< ロ > < 同 > < 回 > < 回 > < 回 > <

GIFS fractals

Theorem (Mihail, Miculescu 2008, S., Swaczyna 2013) If X is a complete metric space and G is a weak GIFS on X of order m, then there exsts a unique nonempty and compact set $A_G \subset X$ such that

$$A_{\mathcal{G}} = \bigcup_{f \in \mathcal{G}} f(A_G \times ... \times A_G)$$

Definition

- (*) A set $A_{\mathcal{G}}$ is called a *attractor* or *fractal generated by* \mathcal{G} .
- (*) A compact metric space X is called *weak* [Banach] GIFS fractal of order m, if X is the attractor of some weak [Banach] GIFS of order m.

< ロ > < 同 > < 三 > < 三 >

problem - the class of GIFSs' fractals

Problem

Is the class of GIFSs' fractals essentially wider than the class of IFSs' fractals?

Which sets/spaces are GIFSs' fractals?

イロン イロン イヨン イヨン

э

problem - the class of GIFSs' fractals

Problem

Is the class of GIFSs' fractals essentially wider than the class of IFSs' fractals?

Which sets/spaces are GIFSs' fractals?

2

イロト イヨト イヨト イヨト

problem - the class of GIFSs' fractals

Problem

Is the class of GIFSs' fractals essentially wider than the class of IFSs' fractals?

Which sets/spaces are GIFSs' fractals?

= nar

イロト イヨト イヨト イヨト

Example (Mihail, Miculescu 2010) The Hilbert cube $X = [0, 1] \times [0, \frac{1}{2}] \times [0, \frac{1}{4}] \times ...$ (*) is a Banach GIFS fractal of order 2, for a GIFS $\mathcal{G} = \{f, g\}$, where

$$f((x_k),(y_k)) = \frac{1}{2}(x_1,y_1,y_2,...) \quad g((x_k),(y_k)) = \frac{1}{2}(1+x_1,y_1,y_2,...);$$

(*) is not a Banach IFS fractal (as it has infinite dimension);

However, it is not known whether it a weak IFS fractal. **Example** (S. 2013)

(1) For each $m \ge 2$, there exists a Cantor set $C(m) \subset \mathbb{R}^2$ such that:

(*) C(m) is a Banach GIFS fractal of order m;

(*) C(m) is not a weak GIFS fractal of order m-1;

(2) There exists a Cantor set $C \subset \mathbb{R}^2$ which is not a weak GIFS fractal. However, C(m) is homeomorphic to the Cantor ternary set, the attractor of a Banach IFS on \mathbb{R} .

イロト 不同 トイヨト イヨト

3

Example (Mihail, Miculescu 2010) The Hilbert cube $X = [0, 1] \times [0, \frac{1}{2}] \times [0, \frac{1}{4}] \times ...:$ (*) is a Banach GIFS fractal of order 2, for a GIFS $\mathcal{G} = \{f, g\}$, where

$$f((x_k),(y_k)) = \frac{1}{2}(x_1,y_1,y_2,...) \quad g((x_k),(y_k)) = \frac{1}{2}(1+x_1,y_1,y_2,...);$$

(*) is not a Banach IFS fractal (as it has infinite dimension); However, it is not known whether it a weak IFS fractal.

Example (S. 2013)

(1) For each $m \ge 2$, there exists a Cantor set $C(m) \subset \mathbb{R}^2$ such that:

(*) C(m) is a Banach GIFS fractal of order m;

(*) C(m) is not a weak GIFS fractal of order m-1;

(2) There exists a Cantor set $C \subset \mathbb{R}^2$ which is not a weak GIFS fractal. However, C(m) is homeomorphic to the Cantor ternary set, the attractor of a Banach IFS on \mathbb{R} .

イロト 不得 トイヨト イヨト 二日

Example (Mihail, Miculescu 2010) The Hilbert cube $X = [0, 1] \times [0, \frac{1}{2}] \times [0, \frac{1}{4}] \times ...$ (*) is a Banach GIFS fractal of order 2, for a GIFS $\mathcal{G} = \{f, g\}$, where

$$f((x_k),(y_k)) = \frac{1}{2}(x_1,y_1,y_2,...) \quad g((x_k),(y_k)) = \frac{1}{2}(1+x_1,y_1,y_2,...);$$

(*) is not a Banach IFS fractal (as it has infinite dimension); However, it is not known whether it a weak IFS fractal. **Example** (S. 2013)

(1) For each $m \ge 2$, there exists a Cantor set $C(m) \subset \mathbb{R}^2$ such that:

(*) C(m) is a Banach GIFS fractal of order m;

(*) C(m) is not a weak GIFS fractal of order m-1;

(2) There exists a Cantor set $C \subset \mathbb{R}^2$ which is not a weak GIFS fractal. However, C(m) is homeomorphic to the Cantor ternary set, the attractor of a Banach IFS on \mathbb{R} .

イロト 不得 トイヨト イヨト 二日

Example (Mihail, Miculescu 2010) The Hilbert cube $X = [0, 1] \times [0, \frac{1}{2}] \times [0, \frac{1}{4}] \times ...:$ (*) is a Banach GIFS fractal of order 2, for a GIFS $\mathcal{G} = \{f, g\}$, where

$$f((x_k),(y_k)) = \frac{1}{2}(x_1,y_1,y_2,...) \quad g((x_k),(y_k)) = \frac{1}{2}(1+x_1,y_1,y_2,...);$$

(*) is not a Banach IFS fractal (as it has infinite dimension); However, it is not known whether it a weak IFS fractal. **Example** (S. 2013)

(1) For each $m \ge 2$, there exists a Cantor set $C(m) \subset \mathbb{R}^2$ such that:

(*) C(m) is a Banach GIFS fractal of order m;

(*) C(m) is not a weak GIFS fractal of order m-1;

(2) There exists a Cantor set $C \subset \mathbb{R}^2$ which is not a weak GIFS fractal. However, C(m) is homeomorphic to the Cantor ternary set, the attractor of a Banach IFS on \mathbb{R} .

イロト 不得 トイヨト イヨト 二日

Example (Mihail, Miculescu 2010) The Hilbert cube $X = [0, 1] \times [0, \frac{1}{2}] \times [0, \frac{1}{4}] \times ...$ (*) is a Banach GIFS fractal of order 2, for a GIFS $\mathcal{G} = \{f, g\}$, where

$$f((x_k),(y_k)) = \frac{1}{2}(x_1,y_1,y_2,...) \quad g((x_k),(y_k)) = \frac{1}{2}(1+x_1,y_1,y_2,...);$$

(*) is not a Banach IFS fractal (as it has infinite dimension); However, it is not known whether it a weak IFS fractal.

Example (S. 2013)

(1) For each $m \ge 2$, there exists a Cantor set $C(m) \subset \mathbb{R}^2$ such that:

(*) C(m) is a Banach GIFS fractal of order m;

(*) C(m) is not a weak GIFS fractal of order m-1;

(2) There exists a Cantor set $C \subset \mathbb{R}^2$ which is not a weak GIFS fractal. However, C(m) is homeomorphic to the Cantor ternary set, the attractor of a Banach IFS on \mathbb{R} .

イロト 不同 トイヨト イヨト

3

A topological space X is called *scattered*, if every its nonempty subspace has an isolated point.

Fact Compact metrizable topological space is scattered iff it is countable.

For a scattered space X, define the Cantor-Bendixon derivative by

 $X' := \{x \in X : x \text{ is an accumulation point of } X\}$

For each ordinal α , define the Cantor-Bendixon α -th derivative $X^{(\alpha)}$ by (*) $X^{(\alpha+1)} := (X^{(\alpha)})';$ (*) $X^{(\alpha)} := \bigcap_{\beta < \alpha} X^{(\beta)}$ for a limit ordinal α .

The scattered height of X is defined by $ht(X) := min\{\alpha : X^{(\alpha)} \text{ is finite}\}.$

Theorem (Mazurkiewicz-Sierpiński)

Each metrizable compact scattered space X is homeomorphic to the space $\omega^{\beta} \cdot n + 1$ for some $\beta < \omega_1$, and in this case $ht(X) = \beta$ and $card(X^{(ht(X))}) = n$.

A topological space X is called *scattered*, if every its nonempty subspace has an isolated point.

Fact Compact metrizable topological space is scattered iff it is countable.

For a scattered space X, define the Cantor-Bendixon derivative by

 $X' := \{x \in X : x \text{ is an accumulation point of } X\}$

For each ordinal α , define the Cantor-Bendixon α -th derivative $X^{(\alpha)}$ by (*) $X^{(\alpha+1)} := (X^{(\alpha)})';$ (*) $X^{(\alpha)} := \bigcap_{\beta < \alpha} X^{(\beta)}$ for a limit ordinal α .

The scattered height of X is defined by $ht(X) := min\{\alpha : X^{(\alpha)} \text{ is finite}\}.$

Theorem (Mazurkiewicz-Sierpiński)

Each metrizable compact scattered space X is homeomorphic to the space $\omega^{\beta} \cdot n + 1$ for some $\beta < \omega_1$, and in this case $ht(X) = \beta$ and $card(X^{(ht(X))}) = n$.

A topological space X is called *scattered*, if every its nonempty subspace has an isolated point.

Fact Compact metrizable topological space is scattered iff it is countable.

For a scattered space X, define the Cantor-Bendixon derivative by

 $X' := \{x \in X : x \text{ is an accumulation point of } X\}$

For each ordinal α , define the Cantor-Bendixon α -th derivative $X^{(\alpha)}$ by (*) $X^{(\alpha+1)} := (X^{(\alpha)})';$ (*) $X^{(\alpha)} := \bigcap_{\beta < \alpha} X^{(\beta)}$ for a limit ordinal α . The *scattered height* of X is defined by $ht(X) := \min\{\alpha : X^{(\alpha)} \text{ is finite}\}.$

Theorem (Mazurkiewicz-Sierpiński) Each metrizable compact scattered space X is homeomorphic to the space $\omega^{\beta} \cdot n + 1$ for some $\beta < \omega_1$, and in this case $ht(X) = \beta$ and $card(X^{(ht(X))}) = n$.

A topological space X is called *scattered*, if every its nonempty subspace has an isolated point.

Fact Compact metrizable topological space is scattered iff it is countable.

For a scattered space X, define the Cantor-Bendixon derivative by

 $X' := \{x \in X : x \text{ is an accumulation point of } X\}$

For each ordinal α , define the Cantor-Bendixon α -th derivative $X^{(\alpha)}$ by (*) $X^{(\alpha+1)} := (X^{(\alpha)})'$; (*) $X^{(\alpha)} := \bigcap_{\beta < \alpha} X^{(\beta)}$ for a limit ordinal α .

The scattered height of X is defined by $ht(X) := min\{\alpha : X^{(\alpha)} \text{ is finite}\}.$

Theorem (Mazurkiewicz-Sierpiński) Each metrizable compact scattered space X is homeomorphic to the space $\omega^{\beta} \cdot n + 1$ for some $\beta < \omega_1$, and in this case $ht(X) = \beta$ and $card(X^{(ht(X))}) = n.$

A topological space X is called *scattered*, if every its nonempty subspace has an isolated point.

Fact Compact metrizable topological space is scattered iff it is countable.

For a scattered space X, define the Cantor-Bendixon derivative by

 $X' := \{x \in X : x \text{ is an accumulation point of } X\}$

For each ordinal α , define the Cantor-Bendixon α -th derivative $X^{(\alpha)}$ by (*) $X^{(\alpha+1)} := (X^{(\alpha)})';$ (*) $X^{(\alpha)} := \bigcap_{\beta < \alpha} X^{(\beta)}$ for a limit ordinal α . The scattered height of X is defined by $ht(X) := \min\{\alpha : X^{(\alpha)} \text{ is finite}\}.$

Theorem (Mazurkiewicz-Sierpiński) Each metrizable compact scattered space X is homeomorphic to the space $\omega^{\beta} \cdot n + 1$ for some $\beta < \omega_1$, and in this case $ht(X) = \beta$ and $card(X^{(ht(X))}) = n.$

A topological space X is called *scattered*, if every its nonempty subspace has an isolated point.

Fact Compact metrizable topological space is scattered iff it is countable.

For a scattered space X, define the Cantor-Bendixon derivative by

 $X' := \{x \in X : x \text{ is an accumulation point of } X\}$

For each ordinal α , define the Cantor-Bendixon α -th derivative $X^{(\alpha)}$ by (*) $X^{(\alpha+1)} := (X^{(\alpha)})';$ (*) $X^{(\alpha)} := \bigcap_{\beta < \alpha} X^{(\beta)}$ for a limit ordinal α . The scattered height of X is defined by $ht(X) := \min\{\alpha : X^{(\alpha)} \text{ is finite}\}.$

Theorem (Mazurkiewicz-Sierpiński)

Each metrizable compact scattered space X is homeomorphic to the space $\omega^{\beta} \cdot n + 1$ for some $\beta < \omega_1$, and in this case $ht(X) = \beta$ and $card(X^{(ht(X))}) = n$.

Theorem (Nowak, 2013)

Let X be a metrizable compact scattered space.

- (1) If ht(X) is a successor ordinal, then X is homeomorphic to a set $A \subset \mathbb{R}$ which is a Banach IFS fractal.
- (2) If ht(X) is limit ordinal, then X is not homeomorphic to any weak IFS fractal.
- (3) X is homeomorphic to a subset $A \subset \mathbb{R}$ which is not a weak IFS-fractal.

Theorem (Maślanka, S. 2017)

Let X be a metrizable compact scattered space.

- (1) X is homeomorphic to a set $A \subset \mathbb{R}$ which is a Banach GIFS fractal of order 2.
- (2) For every $m \in \mathbb{N}$, X is homeomorphic to the set $A \subset \mathbb{R}$ such that: (*) A is a Banach GIFS fractal of order m;
 - (*) A is not a weak GIFS fractal of order m-1;
- (3) X is homeomorphic to a set $A \subset \mathbb{R}$ which is not a weak GIFS-fractal.

Theorem (Nowak, 2013)

Let X be a metrizable compact scattered space.

- (1) If ht(X) is a successor ordinal, then X is homeomorphic to a set $A \subset \mathbb{R}$ which is a Banach IFS fractal.
- (2) If ht(X) is limit ordinal, then X is not homeomorphic to any weak IFS fractal.
- (3) X is homeomorphic to a subset $A \subset \mathbb{R}$ which is not a weak IFS-fractal.

Theorem (Maślanka, S. 2017)

Let X be a metrizable compact scattered space.

- (1) X is homeomorphic to a set $A \subset \mathbb{R}$ which is a Banach GIFS fractal of order 2.
- (2) For every $m \in \mathbb{N}$, X is homeomorphic to the set $A \subset \mathbb{R}$ such that: (*) A is a Banach GIFS fractal of order m;

(*) A is not a weak GIFS fractal of order m-1;

Theorem (Nowak, 2013)

Let X be a metrizable compact scattered space.

- (1) If ht(X) is a successor ordinal, then X is homeomorphic to a set $A \subset \mathbb{R}$ which is a Banach IFS fractal.
- (2) If ht(X) is limit ordinal, then X is not homeomorphic to any weak IFS fractal.
- (3) X is homeomorphic to a subset $A \subset \mathbb{R}$ which is not a weak IFS-fractal.

Theorem (Maślanka, S. 2017)

Let X be a metrizable compact scattered space.

- (1) X is homeomorphic to a set $A \subset \mathbb{R}$ which is a Banach GIFS fractal of order 2.
- (2) For every $m \in \mathbb{N}$, X is homeomorphic to the set $A \subset \mathbb{R}$ such that: (*) A is a Banach GIFS fractal of order m;

(*) A is not a weak GIFS fractal of order m-1;

Theorem (Nowak, 2013)

Let X be a metrizable compact scattered space.

- (1) If ht(X) is a successor ordinal, then X is homeomorphic to a set $A \subset \mathbb{R}$ which is a Banach IFS fractal.
- (2) If ht(X) is limit ordinal, then X is not homeomorphic to any weak IFS fractal.
- (3) X is homeomorphic to a subset $A \subset \mathbb{R}$ which is not a weak IFS-fractal.

Theorem (Maślanka, S. 2017)

Let X be a metrizable compact scattered space.

- (1) X is homeomorphic to a set $A \subset \mathbb{R}$ which is a Banach GIFS fractal of order 2.
- (2) For every $m \in \mathbb{N}$, X is homeomorphic to the set $A \subset \mathbb{R}$ such that: (*) A is a Banach GIFS fractal of order m;

(*) A is not a weak GIFS fractal of order m-1;

Theorem (Nowak, 2013)

Let X be a metrizable compact scattered space.

- (1) If ht(X) is a successor ordinal, then X is homeomorphic to a set $A \subset \mathbb{R}$ which is a Banach IFS fractal.
- (2) If ht(X) is limit ordinal, then X is not homeomorphic to any weak IFS fractal.
- (3) X is homeomorphic to a subset $A \subset \mathbb{R}$ which is not a weak IFS-fractal.

Theorem (Maślanka, S. 2017)

Let X be a metrizable compact scattered space.

- (1) X is homeomorphic to a set $A \subset \mathbb{R}$ which is a Banach GIFS fractal of order 2.
- (2) For every $m \in \mathbb{N}$, X is homeomorphic to the set $A \subset \mathbb{R}$ such that: (*) A is a Banach GIFS fractal of order m:
 - (*) A is not a weak GIFS fractal of order m-1;
- (3) X is homeomorphic to a set $A \subset \mathbb{R}$ which is not a weak GIFS-fractal.

Theorem (Nowak, 2013)

Let X be a metrizable compact scattered space.

- (1) If ht(X) is a successor ordinal, then X is homeomorphic to a set $A \subset \mathbb{R}$ which is a Banach IFS fractal.
- (2) If ht(X) is limit ordinal, then X is not homeomorphic to any weak IFS fractal.
- (3) X is homeomorphic to a subset $A \subset \mathbb{R}$ which is not a weak IFS-fractal.

Theorem (Maślanka, S. 2017)

Let X be a metrizable compact scattered space.

- (1) X is homeomorphic to a set $A \subset \mathbb{R}$ which is a Banach GIFS fractal of order 2.
- (2) For every $m \in \mathbb{N}$, X is homeomorphic to the set $A \subset \mathbb{R}$ such that: (*) A is a Banach GIFS fractal of order m;

(*) A is not a weak GIFS fractal of order m-1;

Theorem (Nowak, 2013)

Let X be a metrizable compact scattered space.

- (1) If ht(X) is a successor ordinal, then X is homeomorphic to a set $A \subset \mathbb{R}$ which is a Banach IFS fractal.
- (2) If ht(X) is limit ordinal, then X is not homeomorphic to any weak IFS fractal.
- (3) X is homeomorphic to a subset $A \subset \mathbb{R}$ which is not a weak IFS-fractal.

Theorem (Maślanka, S. 2017)

Let X be a metrizable compact scattered space.

- (1) X is homeomorphic to a set $A \subset \mathbb{R}$ which is a Banach GIFS fractal of order 2.
- (2) For every $m \in \mathbb{N}$, X is homeomorphic to the set $A \subset \mathbb{R}$ such that: (*) A is a Banach GIFS fractal of order m;

(*) A is not a weak GIFS fractal of order m-1;

Theorem (Nowak, 2013)

Let X be a metrizable compact scattered space.

- (1) If ht(X) is a successor ordinal, then X is homeomorphic to a set $A \subset \mathbb{R}$ which is a Banach IFS fractal.
- (2) If ht(X) is limit ordinal, then X is not homeomorphic to any weak IFS fractal.
- (3) X is homeomorphic to a subset $A \subset \mathbb{R}$ which is not a weak IFS-fractal.

Theorem (Maślanka, S. 2017)

Let X be a metrizable compact scattered space.

- (1) X is homeomorphic to a set $A \subset \mathbb{R}$ which is a Banach GIFS fractal of order 2.
- (2) For every $m \in \mathbb{N}$, X is homeomorphic to the set $A \subset \mathbb{R}$ such that: (*) A is a Banach GIFS fractal of order m;

(*) A is not a weak GIFS fractal of order m-1;

proof - certain scattered subsets of real line

Construction of sets L_{α} (Nowak, 2013)

Fix a limit ordinal $\delta_0 < \omega_1$. For every $\alpha \leq \delta_0$, there exists a sequence (α_n) such that

- (a) for every $\alpha \leq \delta_0$, the sequence $(\alpha_n + 1) \nearrow \alpha$;
- (b) for every $\alpha \leq \beta \leq \delta_0$, we have $\alpha_n \leq \beta_n$ for every $n \in \mathbb{N}$.

For $n \in \mathbb{N}$, let $s_n(x) := r^n x + r^n$, where r < 1. Then define the family L_{α} , $\alpha \leq \delta_0$ in the following inductive way:

(1) $L_0 := \{0\};$

(2)
$$L_{\alpha} = L_0 \cup \bigcup_{n=1}^{\infty} s_n(L_{\alpha_n}).$$

Fact

 L_{α} is scattered space with $ht(L_{\alpha}) = \alpha$ and $(L_{\alpha})^{(\alpha)} = \{0\}$. In particular, L_{α} is homeomorphic to $\omega^{\alpha} + 1$.

proof - certain scattered subsets of real line

Construction of sets L_{α} (Nowak, 2013)

Fix a limit ordinal $\delta_0 < \omega_1$. For every $\alpha \leq \delta_0$, there exists a sequence (α_n) such that

- (a) for every $\alpha \leq \delta_0$, the sequence $(\alpha_n + 1) \nearrow \alpha$;
- (b) for every $\alpha \leq \beta \leq \delta_0$, we have $\alpha_n \leq \beta_n$ for every $n \in \mathbb{N}$.

For $n \in \mathbb{N}$, let $s_n(x) := r^n x + r^n$, where r < 1. Then define the family L_{α} , $\alpha \leq \delta_0$ in the following inductive way:

(1) $L_0 := \{0\};$ (2) $L_\alpha = L_0 \cup \bigcup_{n=1}^{\infty} s_n(L_{\alpha_n}).$

Fact

 L_{α} is scattered space with $ht(L_{\alpha}) = \alpha$ and $(L_{\alpha})^{(\alpha)} = \{0\}$. In particular, L_{α} is homeomorphic to $\omega^{\alpha} + 1$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 シのので

proof - certain scattered subsets of real line

Construction of sets L_{α} (Nowak, 2013)

Fix a limit ordinal $\delta_0 < \omega_1$. For every $\alpha \leq \delta_0$, there exists a sequence (α_n) such that

- (a) for every $\alpha \leq \delta_0$, the sequence $(\alpha_n + 1) \nearrow \alpha$;
- (b) for every $\alpha \leq \beta \leq \delta_0$, we have $\alpha_n \leq \beta_n$ for every $n \in \mathbb{N}$.

For $n \in \mathbb{N}$, let $s_n(x) := r^n x + r^n$, where r < 1. Then define the family L_{α} , $\alpha \leq \delta_0$ in the following inductive way:

(1) $L_0 := \{0\};$ (2) $L_\alpha = L_0 \cup \bigcup_{n=1}^{\infty} s_n(L_{\alpha_n}).$

Fact

 L_{α} is scattered space with $ht(L_{\alpha}) = \alpha$ and $(L_{\alpha})^{(\alpha)} = \{0\}$. In particular, L_{α} is homeomorphic to $\omega^{\alpha} + 1$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 シのので

proof of (1) - unital case

Lemma (Nowak, 2013) For every $\alpha \leq \delta_0$, there exists a map $g_\alpha : [0,1] \rightarrow [0,1]$ such that (i) $\operatorname{Lip}(g_\alpha) \leq \frac{1}{1-2r}$; (ii) if $\alpha \leq \beta \leq \delta_0$, then $g_\alpha(L_\beta) = L_\alpha$. Given $\alpha < \omega_1$ define the map $F, G : L_\alpha \times L_\alpha \rightarrow L_\alpha$ by

$$G(x,y) := s_1(g_{\alpha_1}(x)) \quad \text{and} \quad F(x,y) := \begin{cases} s_{n+1}(g_{\alpha_{n+1}}(x)) & \text{if} \quad y \in s_n(L_{\alpha_n}) \\ 0 & \text{if} \quad y = 0 \end{cases}$$

Then:

$$\operatorname{Lip}(F) \leqslant \frac{2r}{1-2r} \quad \operatorname{Lip}(G) \leqslant \frac{r}{1-2r}$$
$$F(L_{\alpha} \times L_{\alpha}) \cup G(L_{\alpha} \times L_{\alpha}) = \left(L_{0} \cup \bigcup_{n=1}^{\infty} s_{n+1}(L_{\alpha_{n+1}})\right) \cup (s_{1}(L_{\alpha_{1}})) = L_{\alpha}$$

イロト イヨト イヨト --

= nav

proof of (1) - unital case

Lemma (Nowak, 2013) For every $\alpha \leq \delta_0$, there exists a map $g_\alpha : [0,1] \to [0,1]$ such that (i) $\text{Lip}(g_\alpha) \leq \frac{1}{1-2r}$; (ii) if $\alpha \leq \beta \leq \delta_0$, then $g_\alpha(L_\beta) = L_\alpha$. Given $\alpha < \omega_1$ define the map $F, G : L_\alpha \times L_\alpha \to L_\alpha$ by

$$G(x,y) := s_1(g_{\alpha_1}(x)) \quad \text{and} \quad F(x,y) := \begin{cases} s_{n+1}(g_{\alpha_{n+1}}(x)) & \text{if} \quad y \in s_n(L_{\alpha_n}) \\ 0 & \text{if} \quad y = 0 \end{cases}$$

Then:

$$\operatorname{Lip}(F) \leqslant \frac{2r}{1-2r} \quad \operatorname{Lip}(G) \leqslant \frac{r}{1-2r}$$
$$F(L_{\alpha} \times L_{\alpha}) \cup G(L_{\alpha} \times L_{\alpha}) = \left(L_{0} \cup \bigcup_{n=1}^{\infty} s_{n+1}(L_{\alpha_{n+1}})\right) \cup (s_{1}(L_{\alpha_{1}})) = L_{\alpha}$$

イロト (四) (日) (日) (日) (日) (日)

proof of (1) - unital case

Lemma (Nowak, 2013) For every $\alpha \leq \delta_0$, there exists a map $g_\alpha : [0, 1] \rightarrow [0, 1]$ such that (i) $\text{Lip}(g_\alpha) \leq \frac{1}{1-2r}$; (ii) if $\alpha \leq \beta \leq \delta_0$, then $g_\alpha(L_\beta) = L_\alpha$. Given $\alpha < \omega_1$ define the map $F, G : L_\alpha \times L_\alpha \rightarrow L_\alpha$ by

$$G(x,y) := s_1(g_{\alpha_1}(x)) \quad \text{and} \quad F(x,y) := \begin{cases} s_{n+1}(g_{\alpha_{n+1}}(x)) & \text{if} \quad y \in s_n(L_{\alpha_n}) \\ 0 & \text{if} \quad y = 0 \end{cases}$$

Then:

$$\operatorname{Lip}(F) \leq \frac{2r}{1-2r} \quad \operatorname{Lip}(G) \leq \frac{r}{1-2r}$$
$$F(L_{\alpha} \times L_{\alpha}) \cup G(L_{\alpha} \times L_{\alpha}) = \left(L_{0} \cup \bigcup_{n=1}^{\infty} s_{n+1}(L_{\alpha_{n+1}})\right) \cup (s_{1}(L_{\alpha_{1}})) = L_{\alpha}$$

= nav

proof of (1) - the general case

Theorem (Maślanka, S. 2017)

Let X be a metrizable compact scattered space.

- (1) X is homeomorphic to a set $A \subset \mathbb{R}$ which is a Banach GIFS-fractal of order 2.
- (2) For every $m \in \mathbb{N}$, X is homeomorphic to the set $A \subset \mathbb{R}$ such that:
 - (*) A is a Banach GIFS fractal of order m;
 - (*) A is not a weak GIFS fractal of order m-1;

(3) X is homeomorphic to a set $A \subset \mathbb{R}$ which is not a weak GIFS-fractal. Fact

イロト 不得 トイヨト イヨト 二日

If X is a metric space of the form $X = X_1 \cup ... \cup X_n$, where

- (i) each X_i is a Banach GIFS fractal of order 2;
- (ii) $\min_{i\neq j} \operatorname{dist}(X_i, X_j) > \max_i \operatorname{diam}(X_i)$,

then X is a Banach GIFS fractal of order 2.

proof of (1) - the general case

Theorem (Maślanka, S. 2017)

Let X be a metrizable compact scattered space.

- (1) X is homeomorphic to a set $A \subset \mathbb{R}$ which is a Banach GIFS-fractal of order 2.
- (2) For every $m \in \mathbb{N}$, X is homeomorphic to the set $A \subset \mathbb{R}$ such that:

(*) A is a Banach GIFS fractal of order m;

(*) A is not a weak GIFS fractal of order m-1;

(3) X is homeomorphic to a set $A \subset \mathbb{R}$ which is not a weak GIFS-fractal.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 シのので

Fact

If X is a metric space of the form $X = X_1 \cup ... \cup X_n$, where

(i) each X_i is a Banach GIFS fractal of order 2;

(ii) $\min_{i\neq j} \operatorname{dist}(X_i, X_j) > \max_i \operatorname{diam}(X_i)$,

then X is a Banach GIFS fractal of order 2.

proofs of (2) and (3)

Theorem (Maślanka, S. 2017)

Let X be a metrizable compact scattered space.

- (1) X is homeomorphic to a set $A \subset \mathbb{R}$ which is a Banach GIFS fractal of order 2.
- (2) For every $m \in \mathbb{N}$, X is homeomorphic to the set $A \subset \mathbb{R}$ such that:
 - (*) A is a Banach GIFS fractal of order m;
 - (*) A is not a weak GIFS fractal of order m-1;
- (3) X is homeomorphic to a set $A \subset \mathbb{R}$ which is not a weak GIFS fractal.

Modify sets L_{α} in the following way:

(*) replace s_n by another transformation s^α_n (different at each level α);
(*) to each segment s^α_n(L_{α_n}) add appropriate finite set.

proofs of (2) and (3)

Theorem (Maślanka, S. 2017)

Let X be a metrizable compact scattered space.

- (1) X is homeomorphic to a set $A \subset \mathbb{R}$ which is a Banach GIFS fractal of order 2.
- (2) For every $m \in \mathbb{N}$, X is homeomorphic to the set $A \subset \mathbb{R}$ such that:
 - (*) A is a Banach GIFS fractal of order m;
 - (*) A is not a weak GIFS fractal of order m-1;
- (3) X is homeomorphic to a set $A \subset \mathbb{R}$ which is not a weak GIFS fractal.

Modify sets L_{α} in the following way:

(*) replace s_n by another transformation s_n^{α} (different at each level α);

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 シのので

(*) to each segment $s_n^{\alpha}(L_{\alpha_n})$ add appropriate finite set.

next results - further modifications

Theorem(Maślanka, S., 2017)

Let Z be a connected Banach GIFS fractal of order m. There exists a compact metric space X such that:

- (1) each connected component of X is a homothetic copy of Z;
- (2) X is not homeomorphic to a weak IFS fractal;
- (3) X is a Banach GIFS fractal of order $\max\{2, m\}$.

Proof(sketch)

Replace each point in L_ω by appropriately small copy of Z.

Corollary

For every $n \in \mathbb{N}$ and real $1 \leqslant s \leqslant n$, there exists a set $A \subset \mathbb{R}^n$ such that:

```
(i) \dim_H(A) = s;
```

(ii) A is not homeomorphic to a weak IFS fractal;

(iii) A is a Banach GIFS fractal of order 2.

next results - further modifications

Theorem(Maślanka, S., 2017)

Let Z be a connected Banach GIFS fractal of order m. There exists a compact metric space X such that:

- (1) each connected component of X is a homothetic copy of Z;
- (2) X is not homeomorphic to a weak IFS fractal;
- (3) X is a Banach GIFS fractal of order $\max\{2, m\}$.

Proof(sketch)

Replace each point in L_{ω} by appropriately small copy of Z.

Corollary

For every $n \in \mathbb{N}$ and real $1 \leqslant s \leqslant n$, there exists a set $A \subset \mathbb{R}^n$ such that:

イロト 不得 トイヨト イヨト 二日

(i)
$$\dim_H(A) = s;$$

(ii) A is not homeomorphic to a weak IFS fractal;

(iii) A is a Banach GIFS fractal of order 2.

next results - further modifications

Theorem(Maślanka, S., 2017)

Let Z be a connected Banach GIFS fractal of order m. There exists a compact metric space X such that:

- (1) each connected component of X is a homothetic copy of Z;
- (2) X is not homeomorphic to a weak IFS fractal;
- (3) X is a Banach GIFS fractal of order $\max\{2, m\}$.

Proof(sketch)

Replace each point in L_{ω} by appropriately small copy of Z.

Corollary

For every $n \in \mathbb{N}$ and real $1 \leq s \leq n$, there exists a set $A \subset \mathbb{R}^n$ such that:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 シのので

(i)
$$\dim_H(A) = s;$$

(ii) A is not homeomorphic to a weak IFS fractal;

(iii) A is a Banach GIFS fractal of order 2.

open problems

Problems

(1) Let $m \ge 2$. Is there a compact metric space X which is a Banach GIFS fractal of order m, but which is not homeomorphic to a weak GIFS fractal of order m - 1?

(2) Does there exists a Peano continuum X which is a Banach GIFS fractal, but which is not (homeomorphic to) weak IFS fractal?

くぼ ト く ヨ ト く ヨ ト

open problems

Problems

(1) Let $m \ge 2$. Is there a compact metric space X which is a Banach GIFS fractal of order m, but which is not homeomorphic to a weak GIFS fractal of order m - 1?

(2) Does there exists a Peano continuum X which is a Banach GIFS fractal, but which is not (homeomorphic to) weak IFS fractal?

< ロ > < 同 > < 三 > < 三 >

э

open problems

Problems

(1) Let $m \ge 2$. Is there a compact metric space X which is a Banach GIFS fractal of order m, but which is not homeomorphic to a weak GIFS fractal of order m - 1?

(2) Does there exists a Peano continuum X which is a Banach GIFS fractal, but which is not (homeomorphic to) weak IFS fractal?

< ロ > < 同 > < 回 > < 回 > < 回 > <

3

acknowledgments

Thank You For Your Attention!

< ロ > < 同 > < 三 > < 三 > 、

э.

References

[1] R. Miculescu, A. Mihail, *Applications of fixed point theorems in the theory of generalized IFS*, Fixed Point Theory Appl. Volume 2008, Article ID 312876, 11 pages doi:10.1155/2008/312876.

[2] A. Mihail, *Recurrent iterated function systems*, Rev. Roumaine Math. Pures Appl., 53 (2008), 43–53.

[3] M. Nowak, *Topological classifcation of scattered IFS-attractors*, Topology Appl. 160 (14) (2013) 1889–1901.

イロト イポト イヨト イヨト

3